
Dynamic Data Structure Visualisation 1

IMAT3451 – Final Report

Christian Manning – p0928544x

De Montfort University

Computer Science

April 2012

1With thanks to De Montfort University

Abstract

This project aims to create an application which provides a graphical user interface

containing a dynamic visualisation of variables, pointers and structures for the purpose

of teaching these concepts to beginner programmers. To accomplish this it has provided

an interpreter for a language designed specifically for this project as a subset of the C

programming language, with some intentional omissions and additions. The result is a

cross-platform application which simply visualises, and allows modification of, stack data

from the interpreter, showing things such as the link between a pointer and its intended

target memory address, primitive variables and struct variables. The project has been

largely successful, though with some limitations on the range of data structures able to

be defined, specifically a lack of recursive data structures. As such, a more accurate or

appropriate title for this project may be “Dynamic Pointer and Variable Visualisation”.

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Aims and Objectives . 4

2 Related Work 5

3 Design Rationale 6

3.1 Interpreter . 7

4 Development Tools Rationale 8

4.1 C++ . 8

4.2 Boost . 8

4.3 Qt . 10

4.4 Git . 10

5 Implementation Rationale 11

6 Plan 13

6.1 Methodology . 14

6.2 Life Cycle . 15

7 Testing 15

7.1 Verification . 15

7.2 Validation . 16

8 Conclusions 16

8.1 Further Work . 17

Appendices 20

A User Documentation

B Modified Test Plan

C Testing Documentation

D Evidence of Coding – Git Log

1

E Evidence of Coding – Samples

E.1 Expressions Grammar .

E.2 Error Handling .

E.3 C++11 .

F Modified Project Plan

G Periodic Progress Reports

H Self Assessment – Spring Term

List of Figures

1 C swap function . 3

2 C/C++ dynamic memory allocation with a singly linked list 4

3 C pointers . 7

4 Stack showing the results of figure 3 . 7

2

1 Introduction

1.1 Motivation

For any programmer, a reference is a fundamental concept, and is employed in many

forms by programming languages. A reference is a data type whose value is referential

to another data type at another location. A common implementation of a reference is

a pointer. A pointer’s value is simply the memory address of another piece of data, of

which the location may not be known by any other means, and also may itself be a

pointer. To access the data value being pointed to, an operation known as dereferencing

must be performed on the pointer. This is similar to a street address, which refers to a

particular house; a pointer’s value would be the street address and the house a specific

location in memory. When dereferenced, the house is then free to have tasks performed

upon it.

// Without p o i n t e r s

void swap (int a , int b) {
int tmp = a ;

a = b ;

b = tmp ;

}
//With p o i n t e r s

void swap (int∗ a , int∗ b) {
int tmp = ∗a ;

∗a = ∗b ;

∗b = tmp ;

}

Figure 1: C swap function

While this may seem a simple concept, it is of-

ten asked why these data types are used, and not

always access data as value-typed variables. This

is a valid question that may be asked by many stu-

dents not necessarily due to a lack of understand-

ing, but a lack of examples of uses of pointers in

programs. Figure 1 shows a common introductory

example of pointers, which performs a swap oper-

ation on two int variables. It demonstrates how

the value semantics of a simple int data type are

copied into the parameters of the swap function,

so that the operation isn’t performed as expected,

i.e. the copies are modified, not the originals. The

second example shows pointer types as parameters for the function, allowing it to per-

form as expected by dereferencing the pointer variables so that it modifies the original

variables.

This may be a potential use for pointers, however, it is perhaps overly simple and

doesn’t demonstrate the power of pointers with their main use case: data structures.

Through the use of dynamic memory allocation, data does not need to be declared with

a name, merely to a pointer variable. What this means is that allocations will occur

when initiated directly or indirectly by the programmer. The amount of memory to be

allocated is determined at runtime, making it a dynamic process. This is an important

technique to avoid the copying of data, like in figure 1, which not only make it harder

3

to modify data, but excessive memory allocations are also costly. Dynamic memory

becomes useful in data structures whose memory requirements are determined by what

data they are to store, how many pieces of data and in what order.

struct node {
double data ;

node∗ next ;

} ;

node∗ cur = mal loc (s izeof (node)) ;

cur−>next = cur ;

void i n s e r t (double x) {
node∗ tmp = malloc (s izeof (node)) ;

tmp−>data = x ;

tmp−>next = cur−>next ;

cur−>next = tmp ;

}
void next () {

cur−>next = cur−>next−>next ;

}

Figure 2: C/C++ dynamic memory alloca-
tion with a singly linked list

One such data structure is a linked

list (figure 2). When a new piece of

data is to be entered into the list, the

insert function allocates the necessary

amount of memory and adds a pointer to

this memory to the list. The next func-

tion will move through the list. This is

an entirely dynamic process that can be

triggered from user interaction (or oth-

erwise), so the memory required by the

application increases as needed.

A singly linked list is a simple exam-

ple, but the principle remains the same

in other data structures. The problem

that motivates this project is the diffi-

culty that comes from trying to visualise

these structures, especially dynamically, for the purpose of teaching, or even just to gain

insight into the layout of a particular data structure.

1.2 Aims and Objectives

This project aims to create an application which will provide a dynamic visualisation of

pointers and, by extension, data structures. The means to achieve this are outlined in

the following objectives.

• Gather requirements to produce a requirements specification.

• Devise a plan for the project.

• Learn about the chosen tools to be used by creating some basic examples.

• Design and create graphics providing an abstract representation of memory objects.

• Create a user interface for the purpose of displaying and manipulating the afore-

mentioned graphics.

4

• Learn about programming language grammars and from this design a small pro-

gramming language.

• Learn about compiler and interpreter concepts and implement the mentioned lan-

guage as an interactive interpreter.

• Integrate the user interface with this interpreter such that it can interact with the

interpreter to manipulate its data.

• Design and execute a suitable test plan.

2 Related Work

The literature review undertaken as part of the initial hand-in for this project contained

some research into several areas relevant to this project. Through this process it was

discovered that there exists some research into similar goals, some proposing software

products attempting to achieve them. It should be mentioned that none of these ap-

plications are providing a pointer visualisation as this project aims, merely algorithm

animation/visualisation. An early example of this is Balsa (M. Brown and Sedgewick,

1984) and its successor Balsa-II (M. Brown, 1988). These applications offered little in

the way of interactivity as they were aimed more toward instructors providing a set

animation of an algorithm by writing some specialised code in the Pascal language, with

added annotations. It is also possible to create “scripts” which record a users actions

during a session for playback at another time.

The Balsa applications were succeeded by Zeus (M. Brown, 1991) which introduced

some new features such as the ability to step through an algorithm, stopping and starting

it along the way. This was a significant increase in interactivity over Balsa and Balsa-

II, though it still required the algorithm animations to be written specifically for the

application and had little in interactivity with regard to the data. Another application

in the vein of Balsa, Balsa-II and Zeus is Swan (Yang et al., 1996). Swan differs from

the others in that it takes C and C++ code defining the data structures and algorithms

which is then annotated to define the animations. This is unlike the previously mentioned

solutions which require code to be specifically written for visualising.

The researched solution found to be most like the goals set out by this project is

proposed by Chen and Sobh (2001). This tool provides a Java-like language for defining

data structures and algorithms using some predefined models as the building blocks.

This is different from the goals of this project in that the building blocks for the data

5

structures are structs, pointers and variables, so everything is built from the ground up.

Chen and Sobh’s tools also lacks interactivity, like the previous examples, as each data

structure or algorithm has to be translated into Java then compiled so that it can be

run.

While all of the mention software products have merit, they generally lack inter-

activity and dynamism, instead focussing on defined animations. This is the void the

Dynamic Data Structure Visualisation project intends to fill.

3 Design Rationale

Since the initial design document several decisions have been modified or excluded for the

final application design. The final design and usage is located in the user documentation

(refer to appendix A), and the key features are discussed below.

The original design focused on the manipulation of graphics of variables and pointers.

Throughout the project, this focus has shifted more towards the interpreter. What this

means is that the graphics have become mere abstract representations of the underlying

data structures of the interpreter. This approach is potentially very powerful, but an

interpreter is a very complex system, even for a small language such as that designed for

this project (formal specification in appendix A). As a result of this complexity, some

functionality intended to be included with the user interface has been excluded from the

implementation.

Two such excluded features are queueing and a history, whose presence was deter-

mined to be non-essential for the original aims to be achieved. Queueing is a feature

which can mostly be emulated using external applications, for example by using a text

editor to keep code statements which can be moved to the application when they are re-

quired to be executed. This however, is not a solution to the problem, but a workaround

should the user want this functionality. The history feature would have been closely re-

lated to the queue, but with the added ability for the user to step back through previous

operations. While this would have enabled an increase in usability, it also was deemed

non-essential for the project to be a success.

Another feature that has not been implemented is the ability to show the graphical

elements in a particular order, or a layout. A layout would have enabled the user to view

their data structures in a particular way, such that the visual representation is similar to

what is taught in traditional means, for example, a binary tree is drawn top to bottom

with a node’s children below it. This feature could have been a big boost in the project’s

educational utility, though it is not a core feature.

6

Despite these features being removed, the design for this project is suitable for its

intended aim to be achieved: to provide a means of visualising variables and pointers

for the purpose of teaching.

3.1 Interpreter

A common early language taught to or learnt by students who are learning programming

is C. C is quite a simple language which provides lower levels of abstraction than modern

languages, making it an important tool in the learning of key concepts that would

otherwise be hidden from the user. One of these concepts is the pointer.

// p o i n t e r to i n t

int∗ a ;

int b = 123 ;

// a s s i g n address o f b

a = &b ;

// d e r e f e r e n c e and a s s i g n

∗a = 321 ;

Figure 3: C pointers

By creating data structures in C, the memory lay-

out created is often not dissimilar from the code writ-

ten, but how is this seen? An interpreter for C with

a visualisation interface is an approach utilised by this

project. This means that for code written by the user,

a graphical representation will displayed, showing vari-

ables, pointers, the data of the former and the desti-

nation of the latter. What this would allow the user

to do is to write their data structures in C or a C-like

language, then directly visualise how this will appear in memory.

Before:
Address Variable Value

0x00 int* a 0x01

0x01 int b 123

After:
0x00 int* a 0x01

0x01 int b 321

Figure 4: Stack showing the re-
sults of figure 3

An alternative to using an interpreter could be

to take a similar approach to a debugger. A de-

bugger uses information provided by a compiler to

step through a program, step by step. Visual de-

buggers such as those incorporated into an integrated

development environment (IDE) such as Visual Stu-

dio, Eclipse or Qt Creator, can show the data used

by the program at each step. This data could be

manipulated and displayed graphically, although this

approach would require that only data needed to be displayed be made known else a

large amount of unnecessary data will be shown, displacing the necessary. To accomplish

this, either executables will need to be modified or create a means to annotate code such

that only needed code will be able to be debugged. Modifying executables is a dan-

gerous process with potentially drastic effects, for example, corrupting data. Enforcing

the annotation of code can be beneficial in that very little will need to change from the

data structure implementation. However, this method would need significant work in

7

the areas of executable file formats and debugging formats, these both being different

on each platform, and even compilers; this is beyond the scope of a final year project.

An advantage of the interpreter approach is that programming exercises can become

better understood by students due to being able to see the effects of these structures, as

defined in code, and their operations as soon as they are entered. Often these structures

are not simple to draw or generally visualise, certainly when operations are performed

on them as they will need to be redrawn or rearranged to accommodate for the changes,

which are tedious tasks and may not be clear to students.

The main disadvantage of this feature is the complex theory and extensive implemen-

tation required. A compiler or interpreter is a very elaborate piece of software comprised

of several parts, themselves being complicated. Not only this, but it also needs to be

accessible through the use of a graphics user interface, requiring strong integration. How-

ever, this is still a feasible objective that can be accomplished within the bounds of this

project.

4 Development Tools Rationale

4.1 C++

The C++ programming language was chosen for this project because of its wealth of

resources available: libraries, frameworks and learning materials can all be freely ac-

quired. C++ compilers are very widespread and available for all of the target platforms.

Through the use of the C++ standard library, standard template library (STL) and cer-

tain libraries and frameworks, the resulting application will be as portable as possible.

Features from the latest C++ standard, C++11 (ISO, 2012), have been used where

appropriate, which has been very advantageous with regard to code readability and

maintainability. The most useful things that C++11 brings are type inference, initialiser

lists and the range-based for-loop, the latter only previously being available through a

library solution, and the others not available at all in C++.

4.2 Boost

Boost (Boost C++ Libraries 2012) is a collection of high quality, peer-reviewed and

portable libraries providing many different features and functionality, contributed to

by a variety of people. The main purpose of using boost in this project is for the

spirit library. Spirit is a library which, among other features, exposes a Domain-Specific

Embedded Language (DSEL) for defining a language grammar. This DSEL is an almost

8

exact replica of Extended Backus–Naur Form (EBNF), a common notation for expressing

context-free grammars, though confined within the limitations of C++ operators. This

is accomplished using a metaprogramming technique known as expression templates and

results in a recursive-descent parser (Davie and Morrison, 1982).

A common approach to creating an interpreter or compiler is to use an external

parser generator such as the popular Bison(or Yacc)/lex (Mason and D. Brown, 1990;

Lesk and Schmidt, 1975; Johnson, 1978) combination. The downsides to this approach

are for one, requiring an extra step in the build process, but also only providing a C

interface. The extra build step is for generating C code from the grammar defined in

EBNF, and would be acceptable if it were generating C++. With the generated C code,

a C++ interface would have to be grafted on top so as to integrate with the rest of

the application. C and C++ code, while compatible, are not interchangeable, so what

may be idiomatic C is not idiomatic C++ and does not integrate well with either the

standard library or other libraries such as Boost or Qt.

Boost Spirit requires only a single compilation stage and provides a modern C++

interface which has made integration with other C++ code a non-issue. Though it too,

has its negatives. A problem with heavy use of metaprogramming is the memory usage,

executable size and time taken during compilation, exceeding 6GB in some instances of

compiling this project. Unfortunately the solution to this problem is to disable debugging

information produced by the compiler, which is not satisfactory during development. The

release build does not suffer from this problem though, where debugging information is

kept to a minimum.

C++ compiler template errors are also somewhat of a burden on development as

they are often difficult to decipher, and are produced in great quantities as a result

of the slightest error in a Boost Spirit grammar. This has resulted in a vast amount

of time being devoted to tracking down these errors. Microsoft’s Visual Studio C++

compiler outputs some slightly more human-readable errors, though this compiler does

not support platforms other than Microsoft Windows, and GNU/Linux is the primary

development platform.

Other Boost libraries have been used extensively as many integrate directly with

Spirit, when constructing the abstract syntax tree (AST) in particular, which uses Boost

Variant. A variant, also known as a tagged or discriminated union, is a data structure

that can store any one of a predefined set of types. This is used by Spirit directly when

using the or operator (|) in the grammar definition. Variant is a very convenient and

type-safe way to represent attributes created from rules where this operator is used, and

is just as easily processed during the semantic analysis phase of compilation.

9

Overall the usage of Boost in this project has been of great benefit. The expressive-

ness of Boost Spirit’s embedded language vastly improved understanding of the code so

that when changes needed to be made, the implications were clear on the rest of the

code base. It has helped to reduce code complexity, with the only major disadvantage

being significantly increased compile times, which is not a major issue. The portability

of the Boost libraries has also been helpful as it has enabled the same code to compile

and run on multiple platforms with minimal, if any, changes.

4.3 Qt

Qt (Nokia, 2012) is a cross-platform application development framework, mostly used as

a user-friendly way of creating a graphical user interface (GUI) that looks native on all

supported platforms. This is made possible by utilising each platforms’ native drawing

facilities and emulating their look and feel, making Qt a fine choice for cross-platform

development. In combination with Boost, Qt has made cross-platform development very

simple, especially in its speciality area of user interface building, a feat that is often very

difficult to achieve without sacrificing desktop integration.

Along with Qt, Nokia also provides the integrated development environment (IDE)

Qt Creator. This IDE provides first class support for C++ and Qt, with a graphical

form designer interface for UI design and development. A major benefit of using this

IDE during development of this project is due to the fact that it is based around the

Qt framework: it works exactly the same on every supported platform. This has made

cross-platform development a very easy task that would otherwise be a chore.

4.4 Git

Git is a distributed source code management (SCM) system with revision control capa-

bilities. The usage of this tool has allowed the development of this project to be tracked,

version by version. This became useful during development when a regression was dis-

covered while testing changes, as the exact revision where this regression occurred can

be identified. Each revision in git is called a commit, with each one carrying a mes-

sage summarising its changes. When a regression is found, these messages are useful for

showing the intent of the original commit, which can then be fixed appropriately.

The log of commits produced by git for this project can be found in appendix D,

provided as evidence of coding progress.

10

5 Implementation Rationale

As discussed in the initial design documentation this projects takes an approach similar

to a model-view-controller design pattern, though without a distinct controller. What

follows is an overview of the implemented application.

The model in the case of this project is contained within the interpreter and consists

of the program stack, variable table and struct table. The only way to modify this model

is through the interpreter, by passing it a string of code. This string is then parsed by the

Boost Spirit parser, which produces a variety of data structures, dependant on its input,

which form an abstract syntax tree (AST). The AST is heavily reliant on Boost Variant,

described above, to allow the AST to differentiate between different structures that can

each be valid at a particular time, but not all at once. This AST then processed to create

entries in the variable table for newly created variables, in the struct table for newly

defined struct types and to evaluate and verify the input, with some basic type checking.

During this processing, known as semantic analysis (Aho et al., 2007), an intermediate

representation is generated from certain codes, one for each kind of operation (i.e. add,

subtract, load, store, etc.), known as “op codes”. Once this has been completed for all

input, these op codes can then be passed on to the virtual machine (VM). The VM takes

the op codes and modifies the stack based on their contents. The stack, implemented as

a “vector” or dynamic array, is where the values of variables are stored and can be seen

as the actual program data. The stack data is then used to update the visualisation.

Should an error occur during either stage it is displayed using a dialog window, with

some information on what went wrong and where in the input. This is accomplished by

“tagging” each successfully parsed rule’s resultant data structure. This tag, along with

the position in the input string is stored in the error handler, so that this position can be

accessed by using the tag as its identifier. The error reporting provided by this system

is a great help as it has the ability to tell where in the input code the error is and point

out what is wrong with it, as best it can.

When a new struct is defined by the user, the user interface is notified of this change

through use of a construct know as signals and slots. Signal and slots is provided by Qt

and implements the observer design pattern (Blanchette and Summerfield, 2008). This

enables, through very little code, an object to notify other objects of changes so that

they can make the necessary adjustments. In this case that means adding the new struct

and its members to the struct tree widget so that a user can view all defined structs and

their member names and types.

Also implemented is dynamic memory through the use of the new operator. Dynamic

11

memory is used with pointers to reserve a space on the stack for a particular type. This

is analogous to the same keyword in C++ or a combination of malloc and sizeof in C.

Each variable, or allocated memory space, contained in the stack is displayed on

screen along with its value and type. This is updated after every interpreter run. Pointers

are displayed just as variables, but with a line drawn to the variable that it points to.

Dynamically allocated memory is displayed much like a normal variable, except that

their name is generated from their type and stack address as they are unnamed variables,

referred to only by pointers.

The implementation started out from an example included with Boost Spirit, named

“conjure”, which demonstrated a compiler for a very small subset of the C programming

language, smaller than that of this project. Because of its limitations this example has

had to be almost entirely rewritten to support more advanced language features in the

parser, semantic analysis and code generation stages, such as pointers, structs, dynamic

memory allocations and a type system, increasing the code base to twice its size. While

this was a long process, it has allowed for a hands-on approach to learning about a

compiler’s internals, which is a very complex system. If this was written from scratch it

would not have been feasible for a final year project as the time and knowledge needed

would be much longer and wider, respectively.

The language specification provided in the user documentation (appendix A) is an

amalgamation and simplification of a variety of sources (Kernighan:1988:CPL:576122;

Sitaker, 1999; Degenern, 2012). These sources are known to be correct specifications of

the grammar of the C programming language. Using Sitaker, 1999 as the predom-

inant source, the grammar was translated into Boost Spirit, which was an almost

direct translation. This particular source was chosen because of not only being in

Backus–Naur Form (BNF), but being a translation of the specification provided by

Kernighan:1988:CPL:576122 which is the American National Standards Institute

(ANSI) C language specification. The reason for using sources such as these was to en-

sure the validity of the grammar and to support the more advanced features not provided

by the “conjure” example in a known correct way.

There are also some notable limitations to the implementation, which are areas of

potential improvements to the application to better achieve the goals set at the beginning

of the project. One such flaw is the inability to define recursive structures, a cornerstone

of data structures. A recursive data structure is one which contains an instance of or

a reference to an item of the same type. This ability can be added with some work to

the semantic analysis phase, without affecting other areas, but still is not present at the

time of writing. A similar yet distinct limitation is that the graphical visualisation does

12

not represent a pointer with a line when the pointer is a member of a structure type.

Again this can be implemented in the graphics code without affecting other areas and

is also a candidate for further improvement of the application.

Functions are another part of the interpreter that is missing, which are a very useful

concept in programming languages. In the context of this project, functions could have

been a useful tool aiding in automation and the reduction of code needed to operate on

data structures. However, with the limitation of non-recursive data structures only, the

lack of functions is not as sought after as they otherwise would. The implementation of

functions will require much work to the semantic analysis phase of the interpreter as well

as some possible modifications to internal data structures and the virtual machine. This

extension in functionality would be of great benefit to the application should recursive

data structures also get implemented.

Another area of the final application that could be improved is the visualisation as a

whole. It excels is displaying the necessary information to the user, but perhaps does not

accomplish this in the most aesthetically pleasing of ways. An advancement in this could

improve usability by making the displayed information clearer and more accessible. The

visualisation could also use some other usability enhancements such as context menus

on the graphical items that provide a means to perform operations in a more convenient

way.

6 Plan

The plan for this project has had to be revised as the project went forward. As noted

in the previous section, an interpreter is an incredibly complex system that involved

extensive studying of compiler internals from material such as Aho et al., 2007.

When the plan for this project was devised, the time needed for the implementation

was severely underestimated in several regards. Firstly the language grammar design

had to go through several iterations until it provided all the needed features in an

unambiguous fashion, so that certain grammar rules were not arbitrarily chosen over the

intended targets and thus fail to match. This was an ongoing process throughout the

implementation of the interpreter, which may have resulted in a better language overall,

but the time taken has resulted in the loss of several desirable features as discussed in

the previous section.

Due to this significant underestimation during the original planning, user testing was

unable to be scheduled because of a lack of time, potentially making the testing of the

application inadequate. Despite this, normal testing procedures have been undertaken

13

which is discussed in the next section.

Other than the removal of user testing, the plan has only been slightly modified by

extending the time-scales of the implementation stages and the slight delaying of the

writing of this report.

6.1 Methodology

There are many software development methodologies, each catering to their own envi-

ronment, whether a large team in a corporate setting, a small independent team or an

individual. Due to its individualism, this project has limited options with regard to

development methodologies. Those appropriate are outlined below with the final choice

described.

The waterfall model is a sequential development methodology where each of its phases

must be completed in order to continue. These phases are: system requirements, soft-

ware requirements, analysis, design, coding, testing, and operations and maintenance

(Royce, 1970). Although the model is often criticised as flawed and prone to failure, it

is in widespread use among software development projects in industry and governments

(Laplante and Neill, 2004). The reason for this criticism is aimed at its requirements to

produce formal documentation to signify the end of each phase, when it is often the case

that several phases have the need for some overlap or even iterations (Boehm, 1988).

This rigidity can be the downfall of many development projects as a problem identified

late in the process (i.e. in the testing phase) can derail a project entirely. Because of this

many modifications are generally made to the model such as multiple passes, or allow-

ing for backtracking. Another problem with a sequential model is that early processes,

such as a fully detailed design, may not be able to be fully realised until later on in the

life cycle. The features of the waterfall model such as its sequential nature and lack of

flexibility make it unsuitable for this project due to the multiple hand-ins, and high risk

of failure if a defect is found too late.

An alternative methodology to the waterfall is the V-model (Graham et al., 2008).

The V-model is similar to the waterfall model, and is sometimes considered an extension

to it. Its main difference is its focus on testing, which happens throughout the develop-

ment cycle rather than near the end as with the waterfall model. There are four stages

of testing which take place during the V-model: component testing, integration testing,

system testing and acceptance testing. Component testing involves the testing of specific

parts of the system that are able to be separately tested. This could things such as func-

tions or classes. Integration testing tests how well each of the components interface with

14

one another. System testing tests the software product as a whole, verifying against the

requirements. The last kind of testing employed by the V-model is acceptance testing,

otherwise known as user testing. User testing is used to validate the requirements of

the system, which if the previous testing phase was successful, the software should meet.

The V-model, despite being more flexible than the waterfall model, is still sequential in

nature, making the prototyping required by this project difficult, if not impossible.

What’s needed for this project is a methodology following an iterative and incre-

mental life cycle. There are many iterative and incremental development methodologies

that have been used throughout the software development world through various time

periods (Larman and Basili, 2003). An iterative development model follows several

compartmented stages, each resulting in a particular software component. Each of these

stages have their own life cycle which can take a number of forms. This is largely what

separates the different iterative models.

6.2 Life Cycle

The actual development methodology constituting the life cycle of this project could be

considered an iterative and incremental version of the waterfall model. This is because

of the structure and deliverables expected of a final year project. A final year project

has two deadlines, the initial hand-in and final. This suggests that the life cycle must

take this into account with two “releases” or iterations. The first release is required to

produce many documents that describe the design and plan the project throughout the

year. This is a similar approach to what happens at the start of a waterfall life cycle,

though these documents are able to be modified in this case.

A look at the plan (appendix F) will demonstrate its incremental nature with some

of the tasks directly showing different stages of an iteration.

7 Testing

7.1 Verification

Verification testing is the process of determining whether a system meets the require-

ments set out nearer the beginning of a project. This has been accomplished in this

project through a set of test cases that were initially defined for the first hand-in. These

test cases have however, been modified to account for changes in design and therefore

specification. This modified test plan can be found in appendix B.

The plan consists of two separate parts, the user interface testing and interpreter

15

testing. These set of tests together form the system testing, as the tight integration of

the two parts makes it difficult to test them separately, so the separation outlined in the

test cases is merely a convenience. The tests were designed to verify that the planned

objectives have been achieved to the standard outlined by the specification and design

documents.

The results of these test can be found in the Testing Documentation (appendix C),

which shows that the final application passes all of the devised test cases. This means

that the software should conform to the specifications and designs. The test results are

also an ideal way to show the abilities of the application, such as the features of pointers

and structs.

7.2 Validation

Validation testing tests the appropriateness of the specification such that the objectives

of the project have been achieved to satisfactory degree. User testing is a potential

method of validation, however as mentioned above, it was not possible to carry this

out due to time constraints. However, the question of validity can still be answered

objectively, with respect to the aims and objectives as outlined near the beginning of

this document and in the project contract.

The final result of the project matches all of the criteria outlined in the aims and the

objectives have all been met, with an application as a result of the work towards these.

How well these criteria have been met is not a question that can be answered without

external user involvement through user testing, the lack of which being a flaw in this

project’s execution.

8 Conclusions

The Dynamic Data Structure Visualisation project had lofty goals from the start, so it

may be of no surprise that some of the more complex aspects were given priority over

those less so. The interpreter and associated language account for around 75% of the

application code, with more integrating the interpreter with the user interface. This is a

significant portion of a reasonably large code base, totalling 4300 lines of un-preprocessed

C++ and Qt code.

Because of the complexity of this substantial segment of the code base, some fea-

tures were removed, such as functions, and some were just not able to be completed

on time, such as recursive data structures. The lack of the ability to define recursive

16

data structures has hindered hindered the project somewhat as they are a key aspect of

data structures, so being unable to define these has led some uncertainty as to whether

this project meets its aim. The aim was to provide a visualisation for pointers and data

structures, the former of which has been met, but the latter is less clear. It could be

seen that a data structure is simply a structure which holds data, in which case the aim

has been met as structs are able to be defined and used as expected, bar recursion.

However, many data structures used in real-world applications use recursion as their

basis and so these generally cannot be defined using this project’s application.

Despite this, the resultant application serves the purpose of demonstrating pointers

and their effects, which is the more fundamental concept, being vital in many aspects of

software development, and should therefore not be seen as anything but a success.

8.1 Further Work

The are several areas of the application the could use some further work, as mentioned

already, which would increase its viability as a teaching tool. Should this project con-

tinue, first and foremost, the feature that needs to be implemented is recursive data

structure definitions, allowing the most common data structures to be visualised as

normal structs, variables and pointers are currently. Another important potential im-

provement lies in the visualisation, as currently even if recursive data structures are

implemented in the interpreter, they will not be displayed correctly in the visualisation.

Many other improvements could be made to the application including better graphical

representation of data in the visualisation and general user interface improvements to

improve presentation and usability.

References

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman (2007). Compilers: Principles, Tech-

niques, and Tools. 2nd. Boston, MA, USA: Addison-Wesley. isbn: 0-321-49169-6.

Blanchette, Jasmin and Mark Summerfield (2008). C++ GUI Programming with Qt 4.

2nd ed. Upper Saddle River, NJ, USA: Prentice Hall Press. isbn: 9780137143979.

Boehm, B. W. (May 1988). “A spiral model of software development and enhancement”.

In: Computer 21.5, pp. 61–72. issn: 0018-9162. doi: 10.1109/2.59.

Boost C++ Libraries (2012). url: http://boost.org (visited on 04/22/2012).

Brown, M.H. (May 1988). “Exploring algorithms using Balsa-II”. In: Computer 21.5,

pp. 14–36. issn: 0018-9162. doi: 10.1109/2.56.

17

http://dx.doi.org/10.1109/2.59
http://boost.org
http://dx.doi.org/10.1109/2.56

Brown, M.H. (Oct. 1991). “Zeus: a system for algorithm animation and multi-view edit-

ing”. In: Visual Languages, 1991., Proceedings. 1991 IEEE Workshop on, pp. 4–9.

doi: 10.1109/WVL.1991.238857.

Brown, M.H. and Robert Sedgewick (Jan. 1984). “A system for algorithm animation”.

In: SIGGRAPH Comput. Graph. 18 (3), pp. 177–186. issn: 0097-8930. doi: 10.1145/

964965.808596.

Chen, Tao and T. Sobh (2001). “A tool for data structure visualization and user-defined

algorithm animation”. In: Frontiers in Education Conference, 2001. 31st Annual.

Vol. 1, pages. doi: 10.1109/FIE.2001.963845.

Davie, J. T. and R. Morrison (1982). Recursive Descent Compiling. John Wiley & Sons.

isbn: 0470273615.

Degenern, Jutta (2012). ANSI C Grammar (Yacc). url: http://www.quut.com/c/

ANSI-C-grammar-y.html (visited on 04/22/2012).

Graham, Dorothy et al. (2008). Foundations of Software Testing: ISTQB Certification.

Intl Thomson Business Pr. isbn: 9781844809899.

ISO (Feb. 28, 2012). ISO/IEC 14882:2011 Information technology — Programming lan-

guages — C++, 1338 (est.) url: http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=50372.

Johnson, S.C. (1978). Yacc: yet another compiler-compiler. Computing science technical

report. Bell Laboratories.

Laplante, Phillip A. and Colin J. Neill (Feb. 2004). “The Demise of the Waterfall Model

Is Imminent”. In: Queue 1.10, pp. 10–15. issn: 1542-7730. doi: 10.1145/971564.

971573.

Larman, C. and V.R. Basili (June 2003). “Iterative and incremental developments. a

brief history”. In: Computer 36.6, pp. 47–56. issn: 0018-9162. doi: 10.1109/MC.

2003.1204375.

Lesk, M. E. and E. Schmidt (July 1975). Lex - A Lexical Analyzer Generator. Tech. rep.

Bell Laboratories.

Mason, Tony and Doug Brown (1990). Lex & yacc. Sebastopol, CA, USA: O’Reilly &

Associates, Inc. isbn: 0-937175-49-8.

Nokia (2012). Qt. url: http://qt.nokia.com (visited on 04/22/2012).

Royce, W W (1970). “Managing the development of large software systems”. In: Elec-

tronics 26.August. Ed. by Sterling MEditor McMurrin, pp. 1–9.

Sitaker, Kragen (Oct. 1999). C BNF Grammar. url: http://lists.canonical.org/

pipermail/kragen-hacks/1999-October/000201.html (visited on 04/22/2012).

18

http://dx.doi.org/10.1109/WVL.1991.238857
http://dx.doi.org/10.1145/964965.808596
http://dx.doi.org/10.1145/964965.808596
http://dx.doi.org/10.1109/FIE.2001.963845
http://www.quut.com/c/ANSI-C-grammar-y.html
http://www.quut.com/c/ANSI-C-grammar-y.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://dx.doi.org/10.1145/971564.971573
http://dx.doi.org/10.1145/971564.971573
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1109/MC.2003.1204375
http://qt.nokia.com
http://lists.canonical.org/pipermail/kragen-hacks/1999-October/000201.html
http://lists.canonical.org/pipermail/kragen-hacks/1999-October/000201.html

Yang, Jun, Clifford Shaffer, and Lenwood Heath (1996). “Swan: A data structure visual-

ization system”. In: Graph Drawing. Ed. by Franz Brandenburg. Vol. 1027. Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, pp. 520–523. isbn: 978-3-

540-60723-6. doi: 10.1007/BFb0021837.

19

http://dx.doi.org/10.1007/BFb0021837

Appendices

20

A User Documentation

IMAT3451 – Final Year Project

Dynamic Data Structure Visualisation

User Documentation

Christian Manning – p0928544x

De Montfort University

April 2012

Contents

1 Introduction 3

2 Interpreted Language 3

2.1 Specification . 3

2.2 Operator Precedence . 7

2.3 Notes . 8

2.4 Examples . 9

2.4.1 Variable Declaration . 9

2.4.2 Function Declaration . 10

2.4.3 Struct Declaration . 10

2.4.4 Struct Instantiation . 11

2.4.5 If Statement . 11

2.4.6 While Statement . 11

3 User Interface 11

3.1 Adding Variables . 13

3.2 Editing Variables . 13

3.3 Stack Table . 13

3.4 Variable Table . 14

3.5 Struct Tree . 15

1

List of Figures

1 Syntax error. 9

2 Empty main window. 12

3 Add item dialog. 13

4 Edit item dialog. 14

5 Stack table and items. 14

6 Variable table. 15

7 Struct tree. 15

2

1 Introduction

The Dynamic Data Structure Visualisation (DDSV) application aims to provide help to

students who are learning to program. The focus of this application is on the concept

of pointers; specifically, how they are used to build data structures.

It does this by utilising a graphical user interface (GUI) to provide a visualisation con-

taining graphical representations of abstract data types and pointers to them. This

facilitates the visual construction of a data structure, which can then be manipulated to

simulate algorithmic operations.

Another interface to this application utilises the expressiveness of a programming lan-

guage from the GUI in the form of an interpreter. The language accepted by this

interpreter, is a small subset of the C programming language which has quite a low level

model and so pointers are exposed to the user more readily. With this interpreter, C

code can then be visualised graphically, allowing the user to learn

2 Interpreted Language

2.1 Specification

This is the formal grammar specification of the interpreted language using an Extended

Backus-Naur Form (EBNF)-like notation, with some brief descriptions. Each entry is

referred to as a grammar rule.

Key:

3

Symbols Description

<a> a is a non-terminal

a ::= b a is defined as a rule with b as its singular constituent

a b a followed by b

(a b) Groups rules a and b together

a Repeat a zero, one or more times

[a] a is to be matched zero or one times. (Optional)

a | b a or b

-a Do not match a

‘c’ Character string c

%a Comma separated list of a

; End of rule

assign op ::= ‘=’ ;

logical or op ::= ‘||’ ;

logical and op ::= ‘&&’ ;

equality op ::= ‘==’ | ‘! =’ ;

relational op ::= ‘<’ | ‘≤’ | ‘>’ | ‘≥’ ;

additive op ::= ‘+’ | ‘−’ ;

multiplicative op ::= ‘∗’ | ‘/’ ;

Listed above are the binary operators, meaning they require two operands. These are

arithmetic and boolean operators.

unary op ::= ‘+’ | ‘−’ | ‘!’ | ‘∗’ | ‘&’ ;

Unary operators require only one operand.

struct op ::= ‘− >’ | ‘.’

Struct operators are used to select members of a struct variable.

memory op ::= ‘new’

The new operator is used for dynamically allocating memory.

keywords ::= ‘true’ | ‘false’ | ‘if’ | ‘while’ | ‘struct’ | ‘return’ | ‘new’ ;

4

These are the keywords which are reserved words and cannot be used outside of their

required context.

types ::= ‘void’ | ‘int’ | ‘bool’ ;

These are the predefined primitive types that are used for declaring variables, etc.

〈identifier〉 ::= -(keywords | types) , alpha | ‘ ’ , { alpha | digit | ‘ ’ } ;

An identifier must not be a keyword, a primitive type or begin with a digit. It must

start with an alphabetic character or an underscore () to be optionally followed by zero

or more alphabetic characters, digits or underscores.

〈assignment expression〉 ::= 〈logical OR expression〉 [〈unary assign〉];
〈allocation expression〉 ::= 〈memory op〉 〈type specifier〉;
〈unary assign〉 ::= 〈assign op〉

(〈allocation expression〉
| 〈logical OR expression〉);
〈logical OR expression〉 ::= 〈logical AND expression〉

{〈logical or op〉 〈logical AND expression〉};
〈logical AND expression〉 ::= 〈equality expression〉

{〈logical and op〉 〈equality expression〉};
〈equality expression〉 ::= 〈relational expression〉

{〈equality op〉 〈relational expression〉};
〈relational expression〉 ::= 〈additive expression〉

{〈relational op〉 〈additive expression〉};
〈additive expression〉 ::= 〈multiplicative expression〉

{〈additive op〉 〈multiplicative expression〉};
〈multiplicative expression〉 ::= 〈unary expression〉

{〈multiplicative op〉 〈unary expression〉};
〈unary expression〉 ::= [〈unary op〉] 〈postfix expression〉 ;

〈struct expr〉 ::= 〈struct op〉 〈identifier〉;
〈postfix expression〉 ::= 〈primary expression〉

{〈struct expr〉
| 〈postfix op〉} ;

5

〈primary expression〉 ::= int

| 〈identifier〉
| bool

| ‘(’ 〈logical OR expression〉 ‘)’ ;

Assignment expression is the catch-all expression rule. This rule uses recursion so that

it also takes into account operator precedence without additional algorithms. Each of

its constituent rules have a specific set of operators, each with their own precedence.

As can be seen from the top rule only one variable can be assigned at a time, whereas the

rest can be composed of any of the others, allowing complex expressions to be formed.

Available primitive types for constants and variables are integer and boolean only.

An allocation expression is one which allocates memory of a specified type to be assigned

to a pointer.

〈type specifier〉 ::= 〈types〉
| 〈struct specifier〉 ;

〈declarator〉 ::= [‘*’] 〈identifier〉;
〈declaration〉 ::= 〈type specifier〉 [〈init declarator〉] ‘;’;

〈init declarator〉 ::= 〈declarator〉 [‘=’ 〈allocation expression〉
| 〈logical OR expression〉];
〈struct member declaration〉 ::= 〈type specifier〉 〈declarator〉 ‘;’;

〈struct specifier〉 ::= ‘struct’ 〈identifier〉 [‘{’ {〈struct member declaration〉} ‘}’;

The above lists the rule to match a struct definition, which may contain one or more

member declarations. A struct member declaration must not be initialised in any form.

Variable declarations may have a single initialisation from an expression. The optional

‘*’ denotes a pointer type.

〈statement list〉 ::= {〈statement〉} ;

〈statement〉 ::= 〈declaration〉
| 〈assignment expression〉 ‘;’

| 〈if statement〉
| 〈while statement〉
| 〈return statement〉
| 〈compound statement〉 ;

6

Any of the above listed statements can take the place of a 〈statement〉 instance.

〈if statement〉 ::= ‘if’ ‘(’ 〈logical OR expression〉 ‘)’ 〈statement〉 ;

An if statement is a conditional which will only execute its encompassed statement if a

condition is evaluated as true. This condition can be anything that can be represented

by a logical or expression, which is any expression other than an assignment.

〈while statement〉 ::= ‘while’ ’(’ 〈logical OR expression〉 ‘)’ 〈statement〉 ;

The while statement is a looping statement which will execute its enclosed statement for

as long as its conditional logical or expression evaluates to true.

〈compound statement〉 ::= ’{’ [〈statement list〉] ’}’ ;

A compound statement is an list of zero, one or many statements enclosed in braces (‘{’
& ‘}’).
〈return statement〉 ::= ‘return’ [〈logical OR expression〉] ‘;’ ;

〈argument〉 ::= 〈type specifier〉 〈init declarator〉 ;

〈function definition〉 ::= 〈type specifier〉 〈declarator〉
‘(’ [%〈argument〉] ‘)’

〈compound statement〉 ;

〈translation unit〉 ::= { 〈statement〉
| 〈function definition〉 } ;

The translation unit consists of a list of both function declarations and statement lists.

This is root of all that can be passed to the interpreter, i.e. everything must be entered

in this form.

2.2 Operator Precedence

The following table shows the operator precedence of the interpreted language, from

lowest to highest.

7

Precedence Operator Description

1 = Assignment

2 ‖ Logical OR

3 && Logical AND

4 == Equal

!= Not Equal

5 < Less than

≤ Less than or equal to

> More than

≥ More than or equal to

6 + (binary) Addition

− (binary) Subtraction

7 * Multiplication

/ Division

8 + (unary) Plus

– (unary) Minus

! Not

& Address of

* (unary) Dereference

9 −> Select element through pointer

. Select element

The new operator does not have a particular precedence as it can only be used in as-

signments and declarations, effectively giving it a precedence higher than that of ‘=’,

though it is considered a special operator.

2.3 Notes

This language may be similar to C but there are some notable exceptions and omissions:

• Only primitive types are int and bool

• No arrays.

• No increment, decrement or arithmetic assignment (+=, *=, etc.) operators.

• No for loop.

8

• No else to accompany an if statement. A similar effect could be accomplished

by negating the condition of the if statement.

• No recursive struct data types.

• Functions are currently parsed but not processed.

• Struct variables occupy an additional stack entry at its beginning.

Should the parser fail (i.e. fail to match any of the above rules), an error message is

displayed in a dialog. The information it provides will refer to the above rules informing

of what rule was to be expected and also where it was expected (see figure 1). A similar

Figure 1: Syntax error.

error dialog will appear if an error occurs during processing after parsing (semantic

analysis), though it attempts to be slightly more informative without needing to have

the language specification handy.

2.4 Examples

2.4.1 Variable Declaration

// d e c l a r e an i n t e g e r v a r i a b l e named ”a”

int a ;

// assignment on d e c l a r a t i o n

int b = 3 ;

// assignment from an e x p r e s s i o n

int c = b + 2 ;

9

// d e c l a r e a p o i n t e r and a s s i g n i t the address o f a

int ∗ p = &a ;

∗p = 51 ; // a == 51

// d e c l a r e a p o i n t e r v a r i a b l e and a l l o c a t e i t some memory

int ∗ x = new int ;

// d e r e f e r e n c e and a s s i g n

∗x = 123 ;

2.4.2 Function Declaration

int f a c t o r i a l (int n) {
i f (n < 1)

return 1 ;

else

return n ∗ f a c t o r i a l (n−1);

}

2.4.3 Struct Declaration

// Define a s t r u c t

struct po int {
int x ;

int y ;

} ;

// Define and d e c l a r e a s t r u c t v a r i a b l e in one s ta tement

struct po int {
int x ;

int y ;

} p1 ;

struct po int ∗ ptr = new struct po int ;

ptr−>x = 42 ;

ptr−>y = 24 ;

10

2.4.4 Struct Instantiation

struct po int p1 ;

p1 . x = 4 ;

p1 . y = 6 ;

2.4.5 If Statement

int a = 123 ;

// performs the s ta tement (s) on ly i f the

// e x p r e s s i o n e n c l o s e d in () e v a l u a t e s to t r u e

i f (a < 200) {
a = a ∗ 2 ;

}
// a == 246

2.4.6 While Statement

int a = 123 ;

// performs the s ta tement (s) r e p e a t e d l y u n t i l the

// e x p r e s s i o n e n c l o s e d in () e v a l u a t e s to f a l s e

while (a < 200) {
a = a + 1 ;

}
// a == 200

3 User Interface

The user interface provides several ways to control and visualise program data. Figure 2

shows how the main UI appears when it is first opens, with nothing other than the basic

UI elements displayed. The large empty space here is the visualisation area. This is

where data items are displayed graphically once defined with the interpreter text input

or added with the UI. In the upper-right of this screen-shot is a tabbed widget containing

three tabs: Variables, Structs and Stack. These contain informational (read-only) data

11

Figure 2: Empty main window.

concerning the underlying data structures and also to indicate the available struct types

and their members.

Below the tabs is a text box, in which code for the C-like language defined above can be

entered and then interpreted by using the wide push-button.

The tool bar pictured shows five icons which perform separate operations: add item,

edit item, zoom in, zoom out and refresh view. The mouse wheel also performs zooming

functions, i.e. scroll up to zoom in and vice versa. Once in a zoomed in state the

visualisation area can be moved by clicking and dragging an empty space, or by using

the scrollbars which will appear when applicable.

12

3.1 Adding Variables

Creating a variable instance to add to the visualisation can be accomplished in two ways,

through the programming language interpreter (see previous examples) or by using the

“Add Item” dialog. This is activated by clicking either the ‘+’ tool-bar button or the

“Add Item” entry in the “Edit” menu. Figure 3 shows this dialog with values entered

for the declaration of a integer variable. If the entered values are at all invalid, the

Figure 3: Add item dialog.

same dialog windows as those produced by entering text into the interpreter directly are

utilised.

3.2 Editing Variables

Editing the values of variables can be achieved through the use of assignment expression

statements using the interpreter, or the “Edit Item” dialog. The graphic representing

the variable intended to be edited must be selected, then either click the edit tool-bar

button or the “Edit Item” entry in the “Edit” menu.

3.3 Stack Table

The stack table provides information on the stack data structure which is operated on

by the interpreter (see figures 5a and 5b). This information is useful in determining the

memory layout of variables and struct data, and also to determine what value occupies

at a particular stack address (the values in the left side headers are the stack addresses).

13

Figure 4: Edit item dialog.

(a) Stack table (b) Items

Figure 5: Stack table and items.

3.4 Variable Table

Figure 6 shows the variable table for the previous example. It shows each declared (or

dynamically allocated) variable’s name, stack address and the number of stack entries

14

Figure 6: Variable table.

it occupies. This, in combination with the stack table and struct tree described below,

provides some important information with regard to diagnosing problems caused by

pointers, much like a visual debugging interface.

3.5 Struct Tree

The struct tree, as shown in figure 7, displays each defined struct data type, with each

of its members and their types as its children. This can be used with the stack table

Figure 7: Struct tree.

15

to determine which stack entries are for which member variable by both the order they

appear in, and their type.

16

B Modified Test Plan

Test Plan

for

Dynamic Data Structure Visualisation

Final Year Project

Christian Manning – p0928544x

De Montfort University

December 2011

Modified: April 2012

Contents

1 Introduction 2

1.1 Purpose . 2

1.2 Related Documents . 2

1.3 Test Approach . 2

1.3.1 Program Logic . 2

1.3.2 User Interface . 2

1.3.3 Interpreter . 2

1.3.4 Integration . 3

1.3.5 Cross-platform Compatibility . 3

2 Test Cases 3

2.1 User Interface . 3

2.2 Interpreter . 4

2.3 History . 6

3 References 6

1

1 Introduction

1.1 Purpose

The purpose of this document is to specify a plan for testing of the Dynamic Data

Structure Visualisation (DDSV).

1.2 Related Documents

• Software Requirements Specification (SRS)

• Software Design Description (SDD)

1.3 Test Approach

1.3.1 Program Logic

The DDSV project utilises an iterative development methodology which means that

testing is a continuous effort throughout the development life cycle. An ideal way to test

program logic is with unit testing. Unit testing is not applicable in all cases, however,

for the majority of the program logic, unit testing will be very beneficial.

1.3.2 User Interface

The User Interface (UI) can also be tested via unit tests using the QTestLib framework,

which is part of Qt [1]. However, due to the nature of the UI requiring user interaction,

not everything will be covered by unit tests. Therefore, testing the UI will require hand

testing by myself to make sure the functionality works as I intend.

User testing removed April 2012

1.3.3 Interpreter

The interpreter will be using a small C-like language which, mostly, has well defined

behaviour. This is beneficial as it allows tests to be crafted around well-known behaviour

to ensure the correct output is produced. The parser, semantic analysis and virtual

machine shall be tested as a singular unit as they are highly dependent on one another.

2

1.3.4 Integration

The above components are tested separately due to their different natures. But, their

integration with each other also needs to be tested so that the system can work as a

whole. This will be executed using unit tests.

1.3.5 Cross-platform Compatibility

Although Qt [1] makes cross-platform development such that the same code works on

all supported platforms, there are some situations where the UI will behave slightly

differently. One example of this is that Mac OS X often draws things in a different way

to Windows and Linux. For this reason, DDSV’s UI should be tested on all three of the

target platforms (Windows, Linux, Mac OS X).

2 Test Cases

Test numbers (#) added April 2012

2.1 User Interface

Test Input Expected Result

UI1 Add item dialog User selects ”Add Item” from Edit

menu or toolbar

Dialog prompts user for type

UI2 Add basic type User selects ”Primitive type (int)”

from ”Add item” and enters a name

and optionally a value, then selects

”OK” dialog

Graphical representation of

an integer gets added to visu-

alisation. Variable table and

stack updated.

UI3 Add struct type User selects ”Struct Type (User de-

fined)” from ”Add item” dialog, en-

ters a name, optionally enters values

for the members, then selects ”OK”

Graphical representation of

user-defined type gets added

to visualisation. Variable ta-

ble and stack updated.

3

UI4 Add pointer User selects ”Pointer” from ”Add

item dialog”. The type of the

pointee is entered, primitive or

struct. The desired name is entered.

The value entered is an expression

resulting in a stack address

Graphical representation of a

pointer is added to the vi-

sualisation. It points to the

item with the address speci-

fied. Variable table and stack

updated.

Remove an item

or items

Removed April 2012

UI5 Edit item dialog User selects an item and clicks ”Edit

Item” from the Edit menu or the

toolbar

”Edit Item” dialog prompts

the user

UI6 Edit item User enters new value or expression

for item in ”Edit Item” dialog and

selects ”OK”

The selected item is updated

with the new value

Binary Tree Lay-

out

Removed April 2012

Generalised Tree

Layout

Removed April 2012

Graph Layout Removed April 2012

2.2 Interpreter

New section April 2012

Test Input Expected Result

IN1 Declare a variable int a; Variable added to variable

table. Stack table shows

zero (0) entry with type int.

Graphic added to visualisa-

tion.

IN2 Assign a value to

variable

a = 123; Stack entry shows value as

123. Visualisation updated.

4

IN3 Evaluate an

expression, test-

ing operator

precedence

a = 4 + 9 * 11 - 3; Stack entry shows value as

100. Visualisation updated.

IN4 Increment vari-

able by 3

a = a + 3; Stack entry shows value as

103. Visualisation updated.

IN5 Decrement vari-

able by 9

a = a - 9; Stack entry shows value as 94.

Visualisation updated.

IN6 Define a struct

type struct point {

int x;

int y;

};

Struct tree shows the struct

type name with its members

as its children.

IN7 Declare struct

variable

struct point p1; Variable added to variable ta-

ble. Stack has three new

entries, with relevant types

listed. Graphic added to vi-

sualisation.

IN8 Assign to a struct

member variable

p1.x = 42; Stack entry shows value as 42

for member variable. Visuali-

sation updated.

IN9 Declare a pointer

to a struct and as-

sign it an address

struct point *ptr

= &p1;

Graphic added to visualisa-

tion. Single stack entry

added, with value equal to the

stack address of p1.

IN10 Assign struct

member through

pointer

ptr->y = 24; Stack entry shows value as 24

for member variable at cor-

rect address. Visualisation

updated.

5

IN11 False if statement

if(p1.x == 24) {

p1.y = p1.y - 1;

}

Nothing happens.

IN12 True if statement

if(p1.x == 42) {

p1.y = p1.y - 1;

}

p1.y decreases by 1. Stack

entry updated. Visualisation

updated.

IN13 Increment vari-

able in a while

loop

while(p1.x < 100) {

p1.x = p1.x + 1;

}

p1.x updated to 100. Stack

entry updated. Visualisation

updated.

IN14 Infinite loop

while(true) {

123;

}

Error dialog appears inform-

ing of stack overflow. Can

safely resume.

IN15 Invalid input p1.4; Syntax error dialog appears

describing the problem.

IN16 Incorrect input p1.c; Semantic analysis error dialog

appears describing the prob-

lem.

2.3 History

Removed April 2012

3 References

[1] Nokia. Qt. url: http://qt.nokia.com (visited on 12/2011).

6

C Testing Documentation

Testing Documentation

for

Dynamic Data Structure Visualisation

Final Year Project

Christian Manning – p0928544x

De Montfort University

April 2012

Contents

1 Introduction 2

2 User Interface 2

3 Interpreter 2

1

1 Introduction

This document contains the results of the tests defined in the test plan. These tests will

be referred to by their test number (#) as defined in the plan throughout this document.

2 User Interface

Test Expected Result Actual Result

UI1 Add item

dialog

Dialog prompts user for type Dialog prompts user for type

UI2 Add basic

type

Graphical representation of an in-

teger gets added to visualisation.

Variable table and stack updated.

Graphical representation of an in-

teger gets added to visualisation.

Variable table and stack updated.

UI3 Add struct

type

Graphical representation of user-

defined type gets added to visuali-

sation. Variable table and stack up-

dated.

Graphical representation of user-

defined type gets added to visuali-

sation. Variable table and stack up-

dated.

UI4 Add

pointer

Graphical representation of a

pointer is added to the visualisa-

tion. It points to the item with the

address specified. Variable table

and stack updated.

Graphical representation of a

pointer is added to the visualisa-

tion. It points to the item with the

address specified. Variable table

and stack updated.

UI5 Edit item

dialog

”Edit Item” dialog prompts the

user.

”Edit Item” dialog prompts the user

UI6 Edit item The selected item is updated with

the new value.

The selected item is updated with

the new value.

3 Interpreter

Test Expected Result Actual Result

2

IN1 Declare a

variable

Variable added to variable

table. Stack table shows

zero (0) entry with type int.

Graphic added to visualisa-

tion.

Variable added to variable

table. Stack table shows

zero (0) entry with type int.

Graphic added to visualisa-

tion.

IN2 Assign a

value to

variable

Stack entry shows value as

123. Visualisation updated.

Stack entry shows value as

123. Visualisation updated.

IN3 Evaluate an

expression,

testing

operator

precedence

Stack entry shows value as

100. Visualisation updated.

Stack entry shows value as

100. Visualisation updated.

IN4 Increment

variable by

3

Stack entry shows value as

103. Visualisation updated.

Stack entry shows value as

103. Visualisation updated.

IN5 Decrement

variable by

9

Stack entry shows value as 94.

Visualisation updated.

Stack entry shows value as 94.

Visualisation updated.

IN6 Define a

struct type

Struct tree shows the struct

type name with its members

as its children.

Struct tree shows the struct

type name with its members

as its children.

IN7 Declare

struct

variable

Variable added to variable ta-

ble. Stack has three new

entries, with relevant types

listed. Graphic added to vi-

sualisation.

Variable added to variable ta-

ble. Stack has three new

entries, with relevant types

listed. Graphic added to vi-

sualisation.

IN8 Assign to

a struct

member

variable

Stack entry shows value as 42

for member variable. Visuali-

sation updated.

Stack entry shows value as 42

for member variable. Visuali-

sation updated.

3

IN9 Declare a

pointer to a

struct and

assign it an

address

Graphic added to visualisa-

tion. Single stack entry

added, with value equal to the

stack address of p1.

Graphic added to visualisa-

tion. Single stack entry

added, with value equal to the

stack address of p1.

IN10 Assign

struct

member

through

pointer

Stack entry shows value as 24

for member variable at cor-

rect address. Visualisation

updated.

Stack entry shows value as 24

for member variable at cor-

rect address. Visualisation

updated.

IN11 False if

statement

Nothing happens. Nothing happens.

IN12 True if

statement

p1.y decreases by 1. Stack

entry updated. Visualisation

updated.

p1.y decreases by 1. Stack

entry updated. Visualisation

updated.

IN13 Increment

variable in

a while loop

p1.x updated to 100. Stack

entry updated. Visualisation

updated.

p1.x updated to 100. Stack

entry updated. Visualisation

updated.

IN14 Infinite

loop

Error dialog appears inform-

ing of stack overflow. Can

safely resume.

Error dialog appears inform-

ing of stack overflow. Can

safely resume. See figure 1a

IN15 Invalid

input

Syntax error dialog appears

describing the problem.

Syntax error dialog appears

describing the problem. See

figure 1b

IN16 Incorrect

input

Semantic analysis error dialog

appears describing the prob-

lem.

Semantic analysis error dialog

appears describing the prob-

lem. See figure 1c

4

(a) Stack overflow (b) Syntax error (c) Semantic error

5

D Evidence of Coding – Git Log

commit 7 c f95e9 f9c1694a2 fe0 fe274b30915b08 f9cd8ad
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Nov 21 15 : 54 : 4 2 2011 +0000

Empty Qt p r o j e c t

commit f18186a6c fe faa78 f647b06e33caeeddb4a9 fb40
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Wed Nov 23 1 4 : 30 : 48 2011 +0000

Many changes :
− Added some i con s from the Oxygen p r o j e c t
− Created a d i a l o g for adding items
− Created DataType class , which are the items added to the scene
− QGraphicsScene now uses OpenGL by default when a v a i l a b l e (

should be an opt ion l a t e r)
− Created a (c u r r e n t l y non−f u n c t i o n i n g) zoomer for the g raph i c s

scene

commit a815143900c2117e4074a49a1493f3603b0c4732
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Wed Nov 23 2 1 : 48 : 00 2011 +0000

− Add types to combobox

− Stop using OpenGL by default (uses l o t s o f RAM)
− Make drawing items dynamic to t h e i r t ex t
− Add item d i a l o g now works for s imple types
− Non−working widgets added to d i a l o g for user de f ined−types

commit 4 f10f020cdea86738420846dbd0b9d3ef98c2872
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Nov 24 22 : 2 3 : 1 3 2011 +0000

Make the add item d i a l o g show only a s p e c i f i c group o f opt ions
based on s e l e c t e d type .

commit a199448483c08e7b18dfadbb1bf f82a3c48d645f
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Nov 26 16 : 3 4 : 31 2011 +0000

Create a widget with a t a b l e for adding members to new types

commit 1 dcfea4833d2e9db2c34eadd6c8a5ef1c1be495b
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Nov 28 11 : 02 : 3 7 2011 +0000

Modify some widget minimum s i z e s to be more compatible with l i nux
. Add

c++11 support (qt−4.8+)

commit 28250 a888a273fa7d42bebe6242fe27d24307fa f
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Nov 28 13 : 34 : 3 0 2011 +0000

Add rudimentary zooming + columns for user de f ined types

commit 448261 ea f3cb31d2be2f f0e4591d7c9a08cdf6d9
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Dec 9 23 : 25 : 3 3 2011 +0000

many changes :

− remove c++11 u n t i l qt−4.8 i s out
− s t o r e g raph i c s i tems in a hash t ab l e in s t ead o f l i nked l i s t .

a l l ows a c c e s s by name , or maybe by ” address ” in the fu tu r e
− c r e a t e a ” Pointer ” type for g r a p h i c a l l y r e p r e s e n t i n g p o i n t e r s
− implement f u n c t i o n a l i t y to l i n k a po in t e r type to a normal data

type
− r e f e r e n c e l i n k f o l l o w s the po in t e r ob j e c t and data ob j e c t (

qu i t e i n e f f i c i e n t l y atm)

commit abb1a39c2ac8ca1789601d2716cf371029890ad7
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Tue Dec 13 05 : 20 : 12 2011 +0000

Seve ra l changes :

− Make only s imple types work for the prototype
− Add an e d i t item d i a l o g
− Res ize window a b i t

commit 241 b43110b0ed20e6e6d328984c346dd996beb4c
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Jan 2 17 : 28 : 15 2012 +0000

Add Boost i n c l u d e s in preparat ion for i n t e r p r e t e r .

commit d f65502 fe542c217a f42026abb6eccc93 f f23b43
Author : Chris Manning <cmanning999@gmail . com>
Date : Fr i Feb 17 16 : 39 : 4 1 2012 +0000

Lots o f b ig a d d i t i o n s :
− We have an i n t e r p r e t e r ! Based around the Boost S p i r i t con jure1

example (r e f a c t o r e d a b i t) .

− What c u r r e n t l y works :
− v a r i a b l e d e c l a r a t i o n + assignment
− f unc t i on d e f i n i t i o n
− f unc t i on c a l l s , but only as part o f an exp r e s s i on
− scope with funct i ons , may break l a t e r
− struct d e f i n i t i o n s are parsed but not i n t e r p r e t e d yet
− bas i c e r r o r handl ing
− operator precedence

− Some buttons added to the UI for debugging purposes + some
r e f a c t o r i n g o f UI

commit 8 b9e47258062348f f99 f0e f99c48664ed2a1a7cb
Author : Chris Manning <cmanning999@gmail . com>
Date : Fr i Feb 17 16 : 58 : 1 3 2012 +0000

Add i n t e r p r e t e r f i l e to ddvs . pro for qmake bu i l d i ng .
Also use boost −1.48 over 1 .47 (this may j u s t use the system boost

in the fu tu r e)

commit 6 d979246092b4f47d2c42a5d17485780c50f3155
Author : Chris Manning <cmanning999@gmail . com>
Date : Fr i Feb 17 16 : 59 : 4 5 2012 +0000

Change the warnings f l a g to −Wextra to i gnore a l l the warnings
about miss ing parenthese s in the boost s p i r i t grammar

commit e8da8bd29cd26caf1be993f6abaaac1f6db29839
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Feb 24 12 : 51 : 3 2 2012 +0000

Stop the no i s e

commit 462 a235eb0ed03af87fec740221132982fe12b9d
Merge : e8da8bd 6d97924
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Feb 24 12 : 51 : 5 2 2012 +0000

Merge branch ’ master ’ o f g ithub . com : chrismanning /ddvs

commit 5 bc867b902e7e368277bb5313c44402125b56263
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Feb 24 22 : 41 : 2 3 2012 +0000

Comment unused v a r i a b l e s in func t i on d e c l a r a t i o n s to get r i d o f
warnings . Also change l o c a l i n c l u d e s to ”” in s t ead o f <>

commit d6dd5ed87132f220169c187708161ddc8a71e8ad
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Feb 24 22 : 42 : 3 6 2012 +0000

Add boost to i n c l u d e s for windows .

commit 8 f06 f1 f96dbec5024c024e48b8d944af350e763c
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Feb 24 22 : 51 : 5 8 2012 +0000

Some s l i g h t changes to make i t work on windows . A par s e r i n s t ance
has to be c rea ted each time the user r e q u e s t s i t which may be
i n e f f i c i e n t .

Stack o f f s e t s for f u n c t i o n s are now be c a l c u l a t e d (h o p e f u l l y
c o r r e c t l y) .

MSVC should a l s o work , though i t doesn ‘ t seem to with boost −1.48 ,
i t works f i n e with 1 . 47 , so this may have to be downgraded as

MSVC produces much sma l l e r b i n a r i e s (o rde r s o f magnitude) .

commit b3f51489618938d8890340d0f5d9500879d023a5
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Feb 25 16 : 3 6 : 51 2012 +0000

Fix func t i on d e c l a r a t i o n s + d i s a b l e nested f u n c t i o n s (not that
they

worked anyway)

commit cb7f8 fc35d2e81dbc51a1f080ad0e1f08ecb24e5
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Feb 25 23 : 3 9 : 23 2012 +0000

Add boost i n c l u d e s for Mac OS X.

I t b u i l d s and runs OS X with no other changes !
Also note that ve r s i o n 1 .49 i s e x p l i c i t l y s p e c i f i e d

commit d5752052eaee181172095862aa5 f f614e1 f f9 f e2
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Feb 25 23 : 4 8 : 22 2012 +0000

Add some (extremely) rudimentary code j u s t for adding v a r i a b l e s
o r i g i n a t i n g from the i n t e r p r e t e r to the graph i c s scene .

commit 3105 f0b7c3a8832f85a7f2798365bb93976a4f18
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Feb 26 0 0 : 51 : 46 2012 +0000

Update to boost −1.49 for windows which f i x e s bu i l d i ng with MSVC

commit caad96e12f14a1c8df30e8df347526eb999c171d
Author : Chr i s t i an Manning <cmanning999@gmail . com>

Date : Mon Feb 27 11 : 34 : 4 7 2012 +0000

Cleanup .
Got r i d o f some commented code . Changed the grammer s l i g h t l y

commit 7 fae8bd0b420a2365b2b8cea6df7c9dd07343e17
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Feb 27 21 : 27 : 5 9 2012 +0000

Add proper support for pars ing po in t e r types .

commit 15 f1ea3dc36aa6380c7db6fea153d9fdec9cd0e5
Author : Chris Manning <cmanning999@gmail . com>
Date : Thu Mar 1 22 : 07 : 06 2012 +0000

Star t user docs in LaTeX

commit a6c45df83ba89cfd22f4c7d5c84e0917dd4cca6d
Author : Chris Manning <cmanning999@gmail . com>
Date : Sun Mar 4 19 : 4 1 : 4 9 2012 +0000

Fin i shed the language grammar + short d e s c r i p t i o n s
Added operator precedence t a b l e + some examples

commit fb52c4b19cca52176890319f fad9170108c21a16
Author : Chris Manning <cmanning999@gmail . com>
Date : Sun Mar 4 19 : 4 5 : 5 2 2012 +0000

Remove unneeded ope ra to r s and keywords

commit 3344 bfb5bd9d4ea4199dc8db86167c8e488a521d
Author : Chris Manning <cmanning999@gmail . com>
Date : Sun Mar 4 19 : 5 0 : 2 6 2012 +0000

Allow s t r u c t s to have po in t e r and struct members

commit 635 d f f74dc29c463863159a6a65165 f f 81 f9d f ec
Author : Chris Manning <cmanning999@gmail . com>
Date : Sun Mar 4 19 : 5 4 : 1 1 2012 +0000

Remove the types QStr ingLi s t as i t ‘ s redundant , but the GUI s t i l l
needs to know about the types somehow

commit c1eef769eda6029ac542d6fda5aa2f9d088b7d3e
Author : Chris Manning <cmanning999@gmail . com>
Date : Sun Mar 4 19 : 5 5 : 3 6 2012 +0000

Rework the UI using C++ rathe r than the form de s i gne r .

I t now expands proper ly on r e s i z e and the debugging buttons are
only shown when b u i l t in debug mode .

Need to add a queue back .

commit e110b91a1d27b10138c036f7f47ca188097e302b
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Mar 5 00 : 42 : 33 2012 +0000

Add struct example

commit bbe434de604026961400a100bd48923c3b3425df
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Mar 29 20 : 17 : 15 2012 +0100

−Go back to separa te de f & header compi la t ion for speed ups
−Also a l low p o i n t e r s as func t i on return types

commit 201 dd533cd6ef880190543aca2a8be2efaab9313
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Mar 29 23 : 10 : 28 2012 +0100

Report e r r o r s only when nece s sa ry

commit 6 ebee21ca7e7f0874a189e989e0432c89c92012a
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Mar 30 19 : 38 : 27 2012 +0100

Improve e r r o r r e p o r t i n g + add struct debugging

commit 6243244 a14e69d17895311e361100d74a5d61299
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Tue Apr 3 1 7 : 14 : 02 2012 +0100

Work towards g e t t i n g par s e r c l o s e r to the C standard BNF to f i x
s t u f f

commit 0 d069e58f6dee034bde2254657d3fada7210545e
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Tue Apr 3 2 3 : 26 : 09 2012 +0100

Continue f i x i n g i n t e r p r e t e r + some cleanup

commit 39 b76f81d6c9dca5aa7e8762567708da121c1dcb
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 5 01 : 01 : 42 2012 +0100

Bring exp r e s s i on par s ing r u l e s c l o s e r to C standard . I n t e r p r e t e r
temporar i ly broken .

commit 1 e6b51f8b6b1c088475fd27b9f180518a776131c
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 6 0 0 : 28 : 47 2012 +0100

− Parser should now be f u l l y f u n c t i o n a l
− I n t e r p r e t e r s t i l l broken
− Some c l ean up

commit 98 e3c026e2f3623790d715cecb7ad6f7d536877c
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 12 23 : 03 : 51 2012 +0100

Allow more a t t r i b u t e s to be annotated for b e t t e r e r ro r s , e t c .
+ removal o f some commented code

commit 1 a2c539c46f13b5aa1809cabd61fad4da2ee695b
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 12 23 : 06 : 02 2012 +0100

Fix par s e r grammar so that i t ‘ s e a s i e r to work with

commit 5 ab4c6c1a5d396a244beec4c60cb16b2b026759c
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 12 23 : 11 : 21 2012 +0100

Use c++0x (11) f l a g on everyth ing other than msvc where i t ‘ s
default . Ues boost −1.49 on l inux .

commit 003 c97d183e829824a11614ba3729feb5607f26b
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 12 23 : 14 : 52 2012 +0100

Fixed i n t e r p r e t e r ! S t ruc t s a l s o work now . Po inte r s to come .
+ l o t s o f commented code de l e t ed

commit d2 f15839b3765e04 f f9 f9a0e8e82607362ea1e f2
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 14 00 : 14 : 30 2012 +0100

Implement the new keyword for memory a l l o c a t i o n + implement
p o i n t e r s (h o p e f u l l y work)

commit a6928e27b5b75fac27e f0c f f c364da5a60df4a02
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 14 00 : 15 : 46 2012 +0100

Show a d i a l o g with par s e r / i n t e r p r e t e r e r r o r s

commit 7 e2a8a9d04891560acb0237bd8449141f7063292

Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 14 01 : 11 : 02 2012 +0100

Remove an unneeded inc lude . Fixes bu i ld on windows

commit 287 dc7d72b5b4fc9646171dd57e51f2c8ac91f34
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 14 17 : 38 : 18 2012 +0100

Get r i d o f BOOST FOREACH in favour o f range based for (C++0x/C
++11)

commit b52465ade47b3e6c937504905a877914523f661f
Merge : 287 dc7d 7 e2a8a9
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 14 17 : 38 : 56 2012 +0100

Merge branch ’ master ’ o f g ithub . com : chrismanning /ddvs

commit 977 b987c511029c3ba380f09ac676c9dc7bcd71f
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 14 17 : 47 : 17 2012 +0100

Remove some more unneeded i n c l u d e s

commit 78 e9bef76a19979b562ea6941fa1d392d248c413
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 14 21 : 43 : 01 2012 +0100

Switch remaining BOOST FOREACH to range based for + reduce c lang
warnings

commit 228 fd607b0a0deb2f86c8d82036bea330d4f5eb7
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 14 22 : 33 : 10 2012 +0100

Remove the now unneeded expl ic it type conver s i on ope ra to r s .
Should now

be MSVC compatible .

commit 44 e8665f79c1d99e117631c6dc9e21ac6f5ea281
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Apr 16 1 4 : 01 : 16 2012 +0100

Customise QGraphicsView for zooming

commit 0515 c89fd83334a8b9edad175650d79b692ce1af
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Apr 16 1 9 : 07 : 40 2012 +0100

Fix zomming with the wheel , enable dragging with the mouse and
d i s a b l e

zoomwidget

commit c5d784b9ce3 f427 f0adeac6ed6fd537be f4 fbb15
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Apr 16 1 9 : 37 : 30 2012 +0100

Add an ”About Qt” opt ion in the Help menu which shows d e t a i l s
about Qt

commit 9 e f97c6647b78 fcb689216858 f4da1ce0aae f0c9
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Mon Apr 16 2 1 : 47 : 06 2012 +0100

Remove unused v a r i a b l e

commit 08 ea21daf07fe663128e9ec0d32690ca53bfa937
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Tue Apr 17 1 7 : 35 : 03 2012 +0100

Fix s t r u c t s + ’&’ addre s s ing

commit 75 a3645e7597070b45b5f5aa6ec615f9ece11135
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Tue Apr 17 1 8 : 36 : 02 2012 +0100

Fix func t i on d e f i n i t i o n grammar

commit d12778c45a7a87e0fde294c065cb5c374d049a85
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Tue Apr 17 1 8 : 36 : 55 2012 +0100

Make the e r r o r message boxes show code in monospace font

commit e8f9a67cd701cb5ef6a5d4a500f58233bb6d5f14
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Wed Apr 18 01 : 02 : 3 6 2012 +0100

Show de f ined s t r u c t s and t h e i r members in a t r e e in a tab in the
UI

+ s t a r t to reimplement f u n c t i o n s

commit 529 a18edec4612bf019867953916c0613294840d
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Wed Apr 18 17 : 42 : 5 5 2012 +0100

Fix bug o f po in t e r type widths not being c o r r e c t

commit 2 dd0cf91f356dc812550ea356271109047071919
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Wed Apr 18 17 : 43 : 3 8 2012 +0100

Move stack s i z e to a #d e f i n e macro

commit c92eae784bbe8204ca1946692056c3fb226020da
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Wed Apr 18 17 : 44 : 1 3 2012 +0100

Template func t i on to c r e a t e a range from two i t e r a t o r s

commit 743 f1b0419aa759f f36a246dc18bf4ba4781c524
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Wed Apr 18 17 : 45 : 2 5 2012 +0100

Populate s tack and v a r i a b l e l i s t s a f t e r each i n t e r p r e t e r run

commit 6 c7e935d9c20d2e44e50d1599a718c9726d9c5b8
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Wed Apr 18 18 : 03 : 1 2 2012 +0100

Remove a b i l i t y to remove items from v i s u a l i s a t i o n as i t doesn ‘ t
r e a l l y

make sense

commit 839822118 e962f00b4590c16ddd811b51d568145
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 19 02 : 38 : 03 2012 +0100

Fix memory a l l o c a t i o n s , s t r u c t s + weird v a r i a b l e bug

commit 37 c5bda9509531b6006f8c180157fd07a91ba96d
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 19 02 : 40 : 30 2012 +0100

Add v a r i a b l e s to v i s u a l i s a t i o n again

commit c479645a f8ea69df6782e2116874 f7982 f5122df
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 19 02 : 42 : 00 2012 +0100

Reverse s c r o l l wheel zooming

commit 784657 a298cd72c5909dfd48156baf2082c5b26b
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 19 18 : 31 : 58 2012 +0100

Fix struct a l l o c a t i o n s proper ly

commit ec7a5ebc71f116302793735bc8af08 f30a f2ebb5
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Thu Apr 19 20 : 57 : 44 2012 +0100

Draw s t ruc t s , f i x drawing p o i n t e r s

commit 9 fdbcb3dfc7 f0b368fa629c955885ecc8e3901a6
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 0 0 : 23 : 53 2012 +0100

Fix ‘ i f ‘ and ‘ while ‘ s tatements + removed ‘ else ‘

commit af3260a9dcd4fbe55628fb0537a6db447ba703c2
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 0 1 : 15 : 05 2012 +0100

Set s tack s i z e to 8192 , avoid s tack ove r f l ows + remove else
keyword

commit 359834 b3ccb03270528f2942bc6e97fe15470629
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 0 3 : 51 : 32 2012 +0100

Work on user docs some more

commit a736a9289a177e0a0001cf71544aa72757d4b1a7
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 1 9 : 04 : 12 2012 +0100

Re−enable adding and e d i t i n g items v ia the UI
+ remove the a b i l i t y to c r e a t e s t r u c t s with the UI

commit 11 f e8 f e e482ea0b f05be f 236e130ae9 f f c3504b6
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 1 9 : 10 : 18 2012 +0100

Remove some unused menu items

commit 3 e08347dbf113bd29628b4531b6df3b9246d5de5
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 1 9 : 22 : 46 2012 +0100

Fix e d i t i n g items from UI

commit 6 a1808ee4290924cbfa649adcf015fe6ed93d839
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 2 0 : 52 : 20 2012 +0100

Set some more i n i t i a l column widths

commit d56195511a90b4df4d6c1364057b6a5739f5031e
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 2 2 : 28 : 12 2012 +0100

Remove the remains o f zoomwidget

commit 1 dbf50e00c09911d831e4b36b213daeebd26b5d8
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 2 2 : 30 : 42 2012 +0100

Add a s imple ”About” d i a l o g

commit c61657b94d6ef5a78c2d6929fe51e33256149363
Merge : 1 dbf50e d561955
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 2 2 : 31 : 05 2012 +0100

Merge branch ’ master ’ o f g ithub . com : chrismanning /ddvs

commit ec957200510b69820db1e06759a7b382705fc9d0
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 2 3 : 00 : 00 2012 +0100

Make the po in t e r d i a l o g behave c o r r e c t l y

commit 12 a51888ca5b5270a2f95b19d4117d6f3e771b4a
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Fr i Apr 20 2 3 : 07 : 23 2012 +0100

Allow 6 items per row

commit 3 fbd4a97ed626157f4379bcac297b8ed2fcb1a49
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 21 00 : 55 : 16 2012 +0100

Change d i a l o g window t i t l e

commit 89 e8a51df3e2cf0863bebabeda878daa74bf1ed6
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 21 02 : 19 : 43 2012 +0100

Add l o t s o f th ing s to the user docs . Hope fu l ly f i n i s h e d them

commit 6 db4037f2b83f5eaa80926d5fb5d90fd472cd10d
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 21 02 : 27 : 45 2012 +0100

Remove old graph i c s i tems

commit fa35da22040d1bd1e027801d43120e0eabe9cf6e
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 21 19 : 35 : 10 2012 +0100

Fix scop ing o f struct d e f i n i t i o n s

commit 101145 b25122af048cc4 f2b50dd4fc9e7 fb1a998
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sat Apr 21 20 : 29 : 27 2012 +0100

Remove in fo rmat ive t ext for non−par s e r e r r o r

commit b3ba23342d33cba15383deebb25bc33267421310
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 00 : 00 : 3 5 2012 +0100

Make compatible with c lang and probably MSVC

commit 25 b5ecb049480900125f104874ed2182febcc492
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 00 : 19 : 2 0 2012 +0100

Adjust row he ight for windows c o m p a t i b i l i t y

commit ac0 f53880c0bf37204 f599 f f67e1111d99446100
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 00 : 34 : 4 4 2012 +0100

Fix struct r ender ing bug

commit b9a4d4fb42971fa1233798bfc76dda6d77664bce
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 02 : 17 : 3 9 2012 +0100

Enable compi le r warnings again and get r i d o f the parenthese s
ones

commit 14057 b7d3362a6586b1239bdc53a4f3408298314
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 02 : 30 : 5 2 2012 +0100

Remove some i n i t i a l i s a t i o n order warnings + some comment cleanup

commit 58 f5a3ef8e190528b51a5bc0805a543cd3a87393
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 02 : 31 : 4 7 2012 +0100

Fix e r r o r r e p o r t i n g on r e l e a s e b u i l d s

commit ec2 f2432de f04a7173bb98 fc4 f93c96b459 fdc99
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 02 : 32 : 1 5 2012 +0100

Use Cour ier on Windows as the monospace font

commit 422 dfea8fb2ce682d85a431c83d92a12b7a8f f36
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 02 : 32 : 4 9 2012 +0100

Disab le boost s p i r i t q i debugging

commit baab1813ce350f50dea9be03ea312b29d2993a43
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 14 : 17 : 5 1 2012 +0100

Remove some unused parameters and comment out func t i on to get r i d
o f

most warnings

commit d6f264618b1a3b8f2 f175f1e3e8502c47545ba09
Author : Chr i s t i an Manning <cmanning999@gmail . com>
Date : Sun Apr 22 14 : 37 : 5 8 2012 +0100

Proper ly f i x e r r o r s

E Evidence of Coding – Samples

What follows are several samples of the C++ code from this project’s implementation,

highlighting some distinct features.

E.1 Expressions Grammar

// e x p r e s s i o n d e f . h
// o p e r a t o r s from l o w e s t to h i g h e s t precedence
a s s i gn op . add

(”=” , a s t : : op a s s i gn)
;

l o g i c a l o r o p . add
(” | | ” , a s t : : o p l o g i c a l o r)
;

l o g i c a l a n d o p . add
(”&&” , a s t : : o p l o g i c a l a n d)
;

e q u a l i t y o p . add
(”==” , a s t : : op equa l)
(”!=” , a s t : : op not equa l)
;

r e l a t i o n a l o p . add
(”<” , a s t : : o p l e s s)
(”<=” , as t : : o p l e s s e q u a l)
(”>” , a s t : : op g r e a t e r)
(”>=” , as t : : o p g r e a t e r e q u a l)
;

add i t i v e op . add
(”+” , a s t : : op p lus)
(”−” , a s t : : op minus)
;

m u l t i p l i c a t i v e o p . add
(”∗” , a s t : : op t imes)
(”/” , a s t : : op d iv ide)
;

unary op . add
(”+” , a s t : : o p p o s i t i v e)
(”−” , a s t : : op negat ive)
(” ! ” , a s t : : op not)
(”∗” , a s t : : o p i n d i r e c t i o n)

(”&” , a s t : : op address)
;

memory op . add
(”new” , a s t : : op new)
;

s t r u c t o p . add
(”−>” , a s t : : o p s e l e c t p o i n t)
(” . ” , a s t : : o p s e l e c t r e f)
;

p o s t f i x o p . add
(”++” , a s t : : o p p o s t i n c)
(”−−” , a s t : : op pos t dec)
;

keywords . add
(” true ”)
(” f a l s e ”)
(” i f ”)
(” whi l e ”)
(” s t r u c t ”)
(” re turn ”)
(”new”)
(” e r r o r ”)
;

// e x p r e s s i o n s in r e v e r s e precedence
as s i gnment expre s s i on = l o g i c a l O R e x p r e s s i o n > −unary as s i gn ;

a l l o c a t i o n e x p r e s s i o n = memory op > t y p e s p e c i f i e r ;

unary as s i gn = as s i gn op > (a l l o c a t i o n e x p r e s s i o n |
l o g i c a l O R e x p r e s s i o n) ;

l o g i c a l O R e x p r e s s i o n = log i ca l AND expre s s i on > ∗(l o g i c a l o r o p >
l og i ca l AND expre s s i on) ;

l og i ca l AND expre s s i on = e q u a l i t y e x p r e s s i o n > ∗(l o g i c a l a n d o p >
e q u a l i t y e x p r e s s i o n) ;

e q u a l i t y e x p r e s s i o n = r e l a t i o n a l e x p r e s s i o n > ∗(e q u a l i t y o p >
r e l a t i o n a l e x p r e s s i o n) ;

r e l a t i o n a l e x p r e s s i o n = a d d i t i v e e x p r e s s i o n > ∗(r e l a t i o n a l o p >
a d d i t i v e e x p r e s s i o n) ;

a d d i t i v e e x p r e s s i o n = m u l t i p l i c a t i v e e x p r e s s i o n > ∗(add i t i v e op >
m u l t i p l i c a t i v e e x p r e s s i o n) ;

m u l t i p l i c a t i v e e x p r e s s i o n = unary expre s s i on > ∗(m u l t i p l i c a t i v e o p >
unary expre s s i on) ;

unary expre s s i on =
−unary op

> p o s t f i x e x p r e s s i o n
;

s t r u c t e x p r = s t r u c t o p > i d e n t i f i e r ;

p o s t f i x e x p r e s s i o n =
pr imary expre s s i on

> ∗(s t r u c t e x p r | p o s t f i x o p)
;

p r imary expre s s i on =
u i n t

| i d e n t i f i e r
| boo l
| (’ (’ > l o g i c a l O R e x p r e s s i o n > ’) ’)
;

//end e x p r e s s i o n s

t y p e s p e c i f i e r =
types

| s t r u c t s p e c i f i e r
;

d e c l a r a t o r = matches [’ ∗ ’] > i d e n t i f i e r ;

s t ruc t member dec la ra t i on = t y p e s p e c i f i e r > d e c l a r a t o r > ’ ; ’ ;

s t r u c t s p e c i f i e r =
lexeme [” s t r u c t ”] > type id > −(’ { ’ > +

struc t member dec la ra t i on > ’ } ’) ;

i d e n t i f i e r =
! (keywords | types)

>> raw [lexeme [(alpha | ’ ’) >> ∗(alnum | ’ ’)]]
;

t ype id =
! (keywords | types)

>> raw [lexeme [(alpha | ’ ’) >> ∗(alnum | ’ ’)]]
;

The above shows the grammar for expressions written using Boost Spirit which are

declared in an object constructor. This sample highlights the expressiveness of Spirit

and its similarity to EBNF notation. Due to C++’s operator limitations there are some

notable differences to EBNF. > and >> are the expectation and followed-by operators,

respectively, which are not required at all in standard (E)BNF. - also differs in that it

is the optional operator here, but the not operator in EBNF. The not operator in Spirit

is the same as that in regular C++, !.

Each of these rules has an attached attribute, making this an attribute grammar.

When a rule is matched, its attribute is created with its various members containing

values, strings and other information.

// a s t . h
typedef boost : : var iant<

n i l
, Bool Value
, Int Value
, i d e n t i f i e r
, boost : : r e cur s ive wrapper<l o g i ca l OR expre s s i on>

>
pr imary expre s s i on ;

struct l og i ca l OR op : Typed {
optoken ope ra to r ;
l og i ca l AND expre s s i on rhs ;

} ;

struct l o g i c a l O R e x p r e s s i o n : Typed {
l og i ca l AND expre s s i on l h s ;
s td : : l i s t <l og i ca l OR op)> r e s t ;

} ;

BOOST FUSION ADAPT STRUCT(
log ica l OR op ,
(optoken , ope ra to r)
(log i ca l AND express ion , rhs)

)
BOOST FUSION ADAPT STRUCT(

log i ca l OR expre s s i on ,
(log i ca l AND express ion , l h s)
(std : : l i s t <log ica l OR op >, r e s t)

)

The above snippet demonstrates some attribute types that are associated with rules

defined in the previous sample. Due to the way Boost Spirit interacts with objects,

it needs to access the attribute members as a tuple. Boost Fusion contains a macro,

BOOST_FUSION_ADAPT_STRUCT, which adapts struct types to act as tuples.

This sample also shows the use of Boost Variant, representing the attribute of a

primary expression. A primary expression, also shown in the previous sample, is

defined as being either an integer, boolean, identifier or logical_OR_expression; it

can be any one of these, meaning it can only be stored in a specialised container like a

variant.

A type-safe way to access the variant’s contents is through using the apply_visitor

function.

// i n t e r p r e t e r . cpp l i n e 778
as t : : Type g l o b a l : : operator () (a s t : : t y p e s p e c i f i e r& t)
{

qDebug () << ” Proce s s ing : a s t : : t y p e s p e c i f i e r ” ;
t y p e r e s o l v e r t r (e r r o r , cu r r en t s cope) ;
return t . a p p l y v i s i t o r (t r) ;

}
// i n t e r p r e t e r . h l i n e 297
struct t y p e r e s o l v e r : boost : : s t a t i c v i s i t o r <as t : : Type>
{

t y p e r e s o l v e r (e r r o r h a n d l e r& e r r o r , scope ∗ env)
: env (env) , e r r o r (e r r o r)

{}

as t : : Type operator () (a s t : : Type& t)
{

return t ;
}

as t : : Type operator () (a s t : : s t r u c t s p e c i f i e r& s s)
{

qDebug () << ” Proce s s ing : a s t : : s t r u c t s p e c i f i e r ” ;
auto t = env−>l o o k u p s t r u c t t y p e (s s . type name . name) ;
// [. . .] sn ipped
// pro ces s s t r u c t d e f i n i t i o n or d e c l a r a t i o n
return t ;

}

void e r r o r (int id , s td : : s t r i n g const& what)
{

e r r o r (” Error ! ” , what , e r r o r . i t e r s [id]) ;
}

scope ∗ env ;
e r r o r h a n d l e r& e r r o r ;

} ;

This sample shows apply_visitor in use in combination with a function object

type_resolver to determine the type of an attribute. Function objects are also used

extensively throughout the semantic analysis stage, enabling objects to be called like

functions, while also maintaining state.

E.2 Error Handling

// p a r t s o f e x p r e s s i o n d e f . h
typedef funct ion<e r r o r hand l e r> e r r o r h a n d l e r f u n c t i o n ;
typedef funct ion<annotation> anno ta t i on func t i on ;

on er ror<f a i l >(a s s i gnment expres s ion ,
e r r o r h a n d l e r f u n c t i o n (e r r o r) (

” Error ! Expecting ” , 4 , 3)) ;
on succ e s s (a s s ignment expre s s ion ,

anno ta t i on func t i on (e r r o r . i t e r s) (va l , 1)) ;

The above is an example of how error handling is implemented, using Boost Spirit

and Phoenix (utilising functional programming techniques). If an error occurs, the

error_handler_function function object is called along with what it was expecting

(_4) and where in the input this happened (_3). On a successful parse of a rule, the

annotation_function is called with its attribute (_val) and its start position (_1),

tagging the attribute with an id which is then associated with the position. Whenever

an error occurs outside of parsing, the error handler object can be called, with the

attribute’s id to find its position. The items beginning with an underscore (_) are

placeholders for Phoenix functors, and are used to access otherwise difficult to reach

information.

E.3 C++11

// i n t e r p r e t e r . cpp l i n e 1035
bool g l o b a l : : operator () (a s t : : t r a n s l a t i o n u n i t& as t) {

for (a s t : : s t a t e m e n t o r f u n c t i o n& f s : a s t) {
i f (! f s . a p p l y v i s i t o r (∗ this)) {

return fa l se ;
}

}
return true ;

}

This section of code shows the entry point of all grammar attributes. The translation_unit

is the “root” of the abstract syntax tree (AST), and can contain zero, one or many func-

tion definitions or statements, stored as a std::list<boost::variant>. Of course, as

long as functions remain unimplemented it just be seen as a list of statements. The

purpose of demonstrating this piece of code was to show the range-based for loop in

action. This is a new language feature introduced in the new C++ standard (C++11),

influenced by the similar features available in many modern programming languages.

The range-base for reduces code complexity and greatly increases readability, though

can be improved further by using another new language feature: type inference. The

following snippet shows the modified loop.

for (auto& f s : a s t) {
i f (! f s . a p p l y v i s i t o r (∗ this)) {

return fa l se ;
}

}

Through the use of a small utility function template, makeRange shown below, a

range can be made from any pair of iterators, enabling slicing for some type of iterators.

An example follows.

// i n t e r p r e t e r . h l i n e 602
template <typename I t e r a t o r >
struct Range
{

Range (I t e r a t o r const& begin , I t e r a t o r const& end)
: beg in (beg in) , end (end) {}

I t e r a t o r const& begin ()
{

return beg in ;
}
I t e r a t o r const& end ()
{

return end ;
}

I t e r a t o r const& beg in ;
I t e r a t o r const& end ;

} ;

template <typename I t e r a t o r >
Range<I t e r a t o r > makeRange (I t e r a t o r const& begin , I t e r a t o r const& end)
{

return Range<I t e r a t o r >(begin , end) ;
}

//mainwindow . cpp l i n e 233
for (auto const& var : makeRange (i n t e r p r e t e r . getStack () . begin () ,

i n t e r p r e t e r . getStackPos ())) {
QString p = ”” ;
i f (var . type . po in t e r) {

p += ”∗” ;
}

auto t1 = new QTableWidgetItem (QString : : number (var . var)) ;
t1−>setToolTip (t1−>t ex t ()) ;
stackTableWidget−>set I tem (i , 0 , t1) ;

auto t2 = new QTableWidgetItem (QString : : f romStdStr ing (var . type .
t y p e s t r)+p) ;

t2−>setToolTip (t2−>t ex t ()) ;
stackTableWidget−>set I tem (i , 1 , t2) ;
++i ;

}

The example shown is the code that populates the stack table widget in the UI,

which is executed at the end of every interpreter run. It shows how the makeRange

function takes only up to what is represented by the second parameter, which in this

case is the current stack offset. This means that this loop will only operate on the

currently allocated memory (stack positions), else it would try to populate the table

with thousands of non-existent stack entries.

F Modified Project Plan

ID
Ta

sk

M
o

d
e

Ta
sk

 N
am

e
D

u
ra

ti
o

n
St

ar
t

Fi
n

is
h

%
 C

o
m

p
.

1
W

ri
te

 C
o

n
tr

ac
t

3
1

.5
 d

ay
s?

W
e

d
 1

9
/1

0
/1

1T
h

u
 0

1
/1

2
/1

1
1

0
0

%
2

R
eq

u
ir

em
en

ts

Sp
ec

if
ic

at
io

n
3

7
.5

 d
ay

s?
Th

u
 2

0
/1

0
/1

1
M

o
n

1

2
/1

2
/1

1
1

0
0

%

3
D

es
ig

n
 D

o
cu

m
en

ta
ti

o
n

1
5

 d
ay

s
Tu

e
2

2
/1

1
/1

1
M

o
n

 1
2

/1
2

/1
1

1
0

0
%

4
Te

st
 P

la
n

1
5

 d
ay

s?
Tu

e
2

2
/1

1
/1

1
M

o
n

 1
2

/1
2

/1
1

1
0

0
%

5
R

es
e

ar
ch

 H
C

I f
o

r
p

ed
ag

o
gi

c
to

o
ls

7
 d

ay
s?

M
o

n

2
4

/1
0

/1
1

Tu
e

0
1

/1
1

/1
1

1
0

0
%

6
Li

te
ra

tu
re

 R
e

vi
ew

2
1

 d
ay

s?
Tu

e
1

5
/1

1
/1

1
Tu

e
1

3
/1

2
/1

1
1

0
0

%
7

R
u

d
im

en
ta

ry
 U

I
3

 d
ay

s?
Th

u
 2

7
/1

0
/1

1
M

o
n

 3
1

/1
0

/1
1

1
0

0
%

8
D

es
ig

n
 U

I
1

8
 d

ay
s?

W
e

d
 0

2
/1

1
/1

1F
ri

 2
5

/1
1

/1
1

1
0

0
%

9
D

es
ig

n
 g

ra
p

h
ic

s
fo

r
re

p
re

se
n

ti
n

g
p

o
in

te
rs

an

d
 d

at
a

st
ru

ct
u

re
s

9
 d

ay
s?

Tu
e

0
8

/1
1

/1
1

Fr
i 1

8
/1

1
/1

1
1

0
0

%

1
0

Im
p

le
m

en
t

U
I

3
2

 d
ay

s?
Th

u
 2

4
/1

1
/1

1
Fr

i 0
6

/0
1

/1
2

1
0

0
%

1
1

Im
p

le
m

en
t

D
at

a
M

o
d

el
2

7
 d

ay
s?

Th
u

 2
4

/1
1

/1
1

Fr
i 3

0
/1

2
/1

1
1

0
0

%
1

2
Fi

rs
t

H
an

d
-i

n
1

 d
ay

Tu
e

1
3

/1
2

/1
1

Tu
e

1
3

/1
2

/1
1

1
0

0
%

1
3

D
es

ig
n

 s
m

al
l D

SL
2

5
 d

ay
s?

M
o

n
 1

9
/1

2
/1

1F
ri

 2
0

/0
1

/1
2

1
0

0
%

1
4

Im
p

le
m

en
t

in
te

rp
re

te
r

fo
r

D
SL

3
5

 d
ay

s?
M

o
n

2

3
/0

1
/1

2
Fr

i 0
9

/0
3

/1
2

1
0

0
%

1
5

In
te

gr
at

e
la

n
gu

ag
e

w
it

h

U
I

1
4

 d
ay

s?
M

o
n

0

5
/0

3
/1

2
Th

u
 2

2
/0

3
/1

2
1

0
0

%

1
6

U
se

r
d

o
cu

m
en

ta
ti

o
n

4
8

.5
 d

ay
s?

Th
u

 0
9

/0
2

/1
2

Tu
e

1
7

/0
4

/1
2

1
0

0
%

1
7

Fi
n

al
 R

ep
o

rt
6

0
 d

ay
s?

W
e

d
 0

1
/0

2
/1

2T
u

e
2

4
/0

4
/1

2
1

0
0

%
1

8
Fi

n
al

 D
ea

d
lin

e
1

 d
ay

Tu
e

2
4

/0
4

/1
2

Tu
e

2
4

/0
4

/1
2

0
%

0
3

0
7

1
1

1
5

1
9

2
3

2
7

3
1

0
4

0
8

1
2

1
6

2
0

2
4

2
8

0
2

0
6

0
3

 O
ct

 '1
1

1
7

 O
ct

 '1
1

3
1

 O
ct

 '1
1

1
4

 N
o

v
'1

1
2

8
 N

o
v

'1
1

Ta
sk

Sp
lit

M
ile

st
o

n
e

Su
m

m
ar

y

P
ro

je
ct

 S
u

m
m

ar
y

Ex
te

rn
al

 T
as

ks

Ex
te

rn
al

 M
ile

st
o

n
e

In
ac

ti
ve

 T
as

k

In
ac

ti
ve

 M
ile

st
o

n
e

In
ac

ti
ve

 S
u

m
m

ar
y

M
an

u
al

 T
as

k

D
u

ra
ti

o
n

-o
n

ly

M
an

u
al

 S
u

m
m

ar
y

R
o

llu
p

M
an

u
al

 S
u

m
m

ar
y

St
ar

t-
o

n
ly

Fi
n

is
h

-o
n

ly

D
ea

d
lin

e

P
ro

gr
es

s

P
ag

e
1

P
ro

je
ct

: P
ro

je
ct

P
la

n
D

at
e:

 M
o

n
 2

3
/0

4
/1

2

0
6

1
0

1
4

1
8

2
2

2
6

3
0

0
3

0
7

1
1

1
5

1
9

2
3

2
7

3
1

0
4

0
8

1
2

1
6

2
0

2
4

2
8

0
3

0
7

1
1

1
5

1
9

2
3

2
7

3
1

0
4

0
8

1
2

1
6

2
0

2
4

2
8

0
2

2
8

 N
o

v
'1

1
1

2
 D

ec
 '1

1
2

6
 D

ec
 '1

1
0

9
 J

an
 '1

2
2

3
 J

an
 '1

2
0

6
 F

eb
 '1

2
2

0
 F

eb
 '1

2
0

5
 M

ar
 '1

2
1

9
 M

ar
 '1

2
0

2
 A

p
r

'1
2

1
6

 A
p

r
'1

2
3

0
 A

p
r

'1
2

Ta
sk

Sp
lit

M
ile

st
o

n
e

Su
m

m
ar

y

P
ro

je
ct

 S
u

m
m

ar
y

Ex
te

rn
al

 T
as

ks

Ex
te

rn
al

 M
ile

st
o

n
e

In
ac

ti
ve

 T
as

k

In
ac

ti
ve

 M
ile

st
o

n
e

In
ac

ti
ve

 S
u

m
m

ar
y

M
an

u
al

 T
as

k

D
u

ra
ti

o
n

-o
n

ly

M
an

u
al

 S
u

m
m

ar
y

R
o

llu
p

M
an

u
al

 S
u

m
m

ar
y

St
ar

t-
o

n
ly

Fi
n

is
h

-o
n

ly

D
ea

d
lin

e

P
ro

gr
es

s

P
ag

e
2

P
ro

je
ct

: P
ro

je
ct

P
la

n
D

at
e:

 M
o

n
 2

3
/0

4
/1

2

G Periodic Progress Reports

H Self Assessment – Spring Term

	Introduction
	Motivation
	Aims and Objectives

	Related Work
	Design Rationale
	Interpreter

	Development Tools Rationale
	C++
	Boost
	Qt
	Git

	Implementation Rationale
	Plan
	Methodology
	Life Cycle

	Testing
	Verification
	Validation

	Conclusions
	Further Work

	Appendices
	User Documentation
	Modified Test Plan
	Testing Documentation
	Evidence of Coding – Git Log
	Evidence of Coding – Samples
	Expressions Grammar
	Error Handling
	C++11

	Modified Project Plan
	Periodic Progress Reports
	Self Assessment – Spring Term

